Pentcho Valev

2017-05-17 06:44:37 UTC

Permalink

"But inflation's biggest crime was its flexibility: The authors argue that inflation contains so many hypotheses that you can essentially fit at least one of them around any new data that comes out. In short, inflation can never be disproved. People studying it, therefore, are Not Doing Science. [...] Basically, this is an invitation to think for yourself. Physicists are still figuring all this stuff out - as are most scientists, all the time. You just have to decide how much patience you have for answers ... and if the time comes when a theory doesn't make sense, whether you have the chutzpah to tell several thousand physicists that they aren't actually doing science." https://www.wired.com/2017/05/physicists-cant-agree-science-even-means-anymore/Raw Message

How can one tell the physicist that his/her science is dead? Here is an option:

"Look, my lad, I know a dead parrot when I see one, and I'm looking at one right now."

And where is the root of all the evil? Joao Magueijo and Lee Smolin explain:

https://www.amazon.ca/Faster-Than-Speed-Light-Speculation/dp/0738205257

Joao Magueijo, Faster Than the Speed of Light, p. 250: "Lee [Smolin] and I discussed these paradoxes at great length for many months, starting in January 2001. We would meet in cafés in South Kensington or Holland Park to mull over the problem. THE ROOT OF ALL THE EVIL WAS CLEARLY SPECIAL RELATIVITY. All these paradoxes resulted from well known effects such as length contraction, time dilation, or E=mc^2, all basic predictions of special relativity. And all denied the possibility of establishing a well-defined border, common to all observers, capable of containing new quantum gravitational effects."

Here is a synopsis of the sad story. It all started with the false constancy of the speed of light. Einstein plagiarized ("borrowed") it from the Lorentz equations, called it "postulate", and finally derived, for the gullible world, the Lorentz equations from the "postulate" (reverse engineering):

https://en.wikipedia.org/wiki/Lorentz_ether_theory

Albert Einstein: "...it is impossible to base a theory of the transformation laws of space and time on the principle of relativity alone. As we know, this is connected with the relativity of the concepts of "simultaneity" and "shape of moving bodies." To fill this gap, I introduced the principle of the constancy of the velocity of light, which I borrowed from H. A. Lorentz's theory of the stationary luminiferous ether..."

Banesh Hoffmann explains that the Michelson-Morley experiment had confirmed the variable speed of light predicted by Newton's emission theory of light but Einstein ignored this because he preferred an interpretation that involved miracles ("contracting lengths, local time, or Lorentz transformations"):

http://books.google.com/books?id=JokgnS1JtmMC

Banesh Hoffmann, Relativity and Its Roots, p.92: "There are various remarks to be made about this second principle. For instance, if it is so obvious, how could it turn out to be part of a revolution - especially when the first principle is also a natural one? Moreover, if light consists of particles, as Einstein had suggested in his paper submitted just thirteen weeks before this one, the second principle seems absurd: A stone thrown from a speeding train can do far more damage than one thrown from a train at rest; the speed of the particle is not independent of the motion of the object emitting it. And if we take light to consist of particles and assume that these particles obey Newton's laws, they will conform to Newtonian relativity and thus automatically account for the null result of the Michelson-Morley experiment without recourse to contracting lengths, local time, or Lorentz transformations. Yet, as we have seen, Einstein resisted the temptation to account for the null result in terms of particles of light and simple, familiar Newtonian ideas, and introduced as his second postulate something that was more or less obvious when thought of in terms of waves in an ether. If it was so obvious, though, why did he need to state it as a principle? Because, having taken from the idea of light waves in the ether the one aspect that he needed, he declared early in his paper, to quote his own words, that "the introduction of a 'luminiferous ether' will prove to be superfluous."

John Stachel explains that the constancy of the speed of light seemed nonsense to Einstein but he introduced it nevertheless:

http://www.aip.org/history/exhibits/einstein/essay-einstein-relativity.htm

John Stachel: "But this seems to be nonsense. How can it happen that the speed of light relative to an observer cannot be increased or decreased if that observer moves towards or away from a light beam? Einstein states that he wrestled with this problem over a lengthy period of time, to the point of despair."

The introduction of the false postulate was Einstein's original sin. The malignancy was there but it was still sterile - all validly deducible consequences of the false postulate were obviously absurd and unacceptable. However Einstein's second sin - a fraudulent and invalid deduction - solved this problem. In 1905 Einstein derived, from his two postulates, the conclusion "the clock moved from A to B lags behind the other which has remained at B":

http://www.fourmilab.ch/etexts/einstein/specrel/www/

Albert Einstein, ON THE ECTRODYNAMICS OF MOVING BODIES, 1905: "From this there ensues the following peculiar consequence. If at the points A and B of K there are stationary clocks which, viewed in the stationary system, are synchronous; and if the clock at A is moved with the velocity v along the line AB to B, then on its arrival at B the two clocks no longer synchronize, but the clock moved from A to B lags behind the other which has remained at B by tv^2/2c^2 (up to magnitudes of fourth and higher order), t being the time occupied in the journey from A to B."

The conclusion

"The clock moved from A to B lags behind the other which has remained at B"

does not follow from Einstein's 1905 postulates - the argument is invalid. The following two conclusions, in contrast, VALIDLY follow from the postulates:

Conclusion 1: The clock moved from A to B lags behind the other which has remained at B, as judged from the stationary system.

Conclusion 2: The clock which has remained at B lags behind the clock moved from A to B, as judged from the moving system.

Conclusions 1 and 2 (symmetrical time dilation) in their combination give no prediction for the readings of the two clocks as they meet at B - in this sense the false postulate is sterile. In contrast, the invalidly deduced conclusion (asymmetrical time dilation) provides a straightforward prediction - the moving clock is slow, the stationary one is FAST. The famous "travel into the future" is a direct implication - the slowness of the moving clock means that its (moving) owner can remain virtually unchanged while sixty million years are passing for the stationary system:

http://www.bourbaphy.fr/damourtemps.pdf

Thibault Damour: "The paradigm of the special relativistic upheaval of the usual concept of time is the twin paradox. Let us emphasize that this striking example of time dilation proves that time travel (towards the future) is possible. As a gedanken experiment (if we neglect practicalities such as the technology needed for reaching velocities comparable to the velocity of light, the cost of the fuel and the capacity of the traveller to sustain high accelerations), it shows that a sentient being can jump, "within a minute" (of his experienced time) arbitrarily far in the future, say sixty million years ahead, and see, and be part of, what (will) happen then on Earth. This is a clear way of realizing that the future "already exists" (as we can experience it "in a minute")."

The year 1905 can be regarded as the year of the death of physics. Science died and idiotic magic was born. The gullible world immediately fell in love with the idiocy:

Loading Image...

http://plus.maths.org/issue37/features/Einstein/index.html

John Barrow FRS: "Einstein restored faith in the unintelligibility of science. Everyone knew that Einstein had done something important in 1905 (and again in 1915) but almost nobody could tell you exactly what it was. When Einstein was interviewed for a Dutch newspaper in 1921, he attributed his mass appeal to the mystery of his work for the ordinary person: "Does it make a silly impression on me, here and yonder, about my theories of which they cannot understand a word? I think it is funny and also interesting to observe. I am sure that it is the mystery of non-understanding that appeals to them...it impresses them, it has the colour and the appeal of the mysterious." Relativity was a fashionable notion. It promised to sweep away old absolutist notions and refurbish science with modern ideas. In art and literature too, revolutionary changes were doing away with old conventions and standards. All things were being made new. Einstein's relativity suited the mood. Nobody got very excited about Einstein's brownian motion or his photoelectric effect but relativity promised to turn the world inside out."

Pentcho Valev