Pentcho Valev

2017-11-17 08:40:01 UTC

Ethan Siegel: "Scientific Theories Never Die, Not Unless Scientists Choose To Let Them. When it comes to science, we like to think that we formulate hypotheses, test them, throw away the ones that fail to match, and continue testing the successful one until only the best ideas are left. But the truth is a lot muddier than that. The actual process of science involves tweaking your initial hypothesis over and over, trying to pull it in line with what we already know. [...] By the addition of enough extra free parameters, caveats, behaviors, or modifications to your theory, you can literally salvage any idea. As long as you're willing to tweak what you've come up with sufficiently, you can never rule anything out." https://www.forbes.com/sites/startswithabang/2017/11/16/scientific-theories-never-die-not-unless-scientists-choose-to-let-them/

Sabine Hossenfelder (Bee): "The criticism you raise that there are lots of speculative models that have no known relevance for the description of nature has very little to do with string theory but is a general disease of the research area. Lots of theorists produce lots of models that have no chance of ever being tested or ruled out because that's how they earn a living. The smaller the probability of the model being ruled out in their lifetime, the better. It's basic economics. Survival of the 'fittest' resulting in the natural selection of invincible models that can forever be amended." http://www.math.columbia.edu/~woit/wordpress/?p=9375

Before 1915 theoretical physics was DEDUCTIVE - you cannot introduce any changes to your theory that are not deducible from the initial axioms (postulates). In 1915 things changed. Here Michel Janssen describes endless empirical groping, fudging and fitting until "excellent agreement with observation" was reached:

Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. [...] The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. [...] Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. [...] On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann equations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation." https://netfiles.umn.edu/users/janss011/home%20page/EBms.pdf

Einstein's general relativity had not predicted that the gravitational waves travel at the speed of light but was tweaked to make that prediction:

Arthur Eddington: "The statement that in the relativity theory gravitational waves are propagated with the speed of light has, I believe, been based entirely upon the foregoing investigation; but it will be seen that it is only true in a very conventional sense. If coordinates are chosen so as to satisfy a certain condition which has no very clear geometrical importance, the speed is that of light; if the coordinates are slightly different the speed is altogether different from that of light. The result stands or falls by the choice of coordinates and, so far as can be judged, the coordinates here used were purposely introduced in order to obtain the simplification which results from representing the propagation as occurring with the speed of light. The argument thus follows a vicious circle." The Mathematical Theory of Relativity, pp. 130-131 https://www.amazon.com/Mathematical-Theory-Relativity-S-Eddington/dp/0521091659

In order to be consistent with dark matter, general relativity needs four fudge factors:

"Verlinde's calculations fit the new study's observations without resorting to free parameters – essentially values that can be tweaked at will to make theory and observation match. By contrast, says Brouwer, conventional dark matter models need four free parameters to be adjusted to explain the data." https://www.newscientist.com/article/2116446-first-test-of-rival-to-einsteins-gravity-kills-off-dark-matter/

How many fudge factors LIGO conspirators needed to model the nonexistent gravitational waves is a deep mystery:

"Cornell professors Saul Teukolsky, astrophysics, and Larry Kidder, astronomy, played an instrumental role in the first detection of gravitational waves, a century after Albert Einstein predicted their existence in his theory of general relativity. [...] The LIGO and Virgo group confirmed that these gravitational waves had come from the collision of black holes by comparing their data with a theoretical model developed at Cornell. Teukolsky and the Cornell-founded Simulation of eXtreme Spacetimes collaboration group have been developing this model since 2000, according to the University." http://cornellsun.com/2016/02/10/cornell-scientists-validate-einsteins-theory-of-relativity/

Pentcho Valev

Sabine Hossenfelder (Bee): "The criticism you raise that there are lots of speculative models that have no known relevance for the description of nature has very little to do with string theory but is a general disease of the research area. Lots of theorists produce lots of models that have no chance of ever being tested or ruled out because that's how they earn a living. The smaller the probability of the model being ruled out in their lifetime, the better. It's basic economics. Survival of the 'fittest' resulting in the natural selection of invincible models that can forever be amended." http://www.math.columbia.edu/~woit/wordpress/?p=9375

Before 1915 theoretical physics was DEDUCTIVE - you cannot introduce any changes to your theory that are not deducible from the initial axioms (postulates). In 1915 things changed. Here Michel Janssen describes endless empirical groping, fudging and fitting until "excellent agreement with observation" was reached:

Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. [...] The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. [...] Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. [...] On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann equations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation." https://netfiles.umn.edu/users/janss011/home%20page/EBms.pdf

Einstein's general relativity had not predicted that the gravitational waves travel at the speed of light but was tweaked to make that prediction:

Arthur Eddington: "The statement that in the relativity theory gravitational waves are propagated with the speed of light has, I believe, been based entirely upon the foregoing investigation; but it will be seen that it is only true in a very conventional sense. If coordinates are chosen so as to satisfy a certain condition which has no very clear geometrical importance, the speed is that of light; if the coordinates are slightly different the speed is altogether different from that of light. The result stands or falls by the choice of coordinates and, so far as can be judged, the coordinates here used were purposely introduced in order to obtain the simplification which results from representing the propagation as occurring with the speed of light. The argument thus follows a vicious circle." The Mathematical Theory of Relativity, pp. 130-131 https://www.amazon.com/Mathematical-Theory-Relativity-S-Eddington/dp/0521091659

In order to be consistent with dark matter, general relativity needs four fudge factors:

"Verlinde's calculations fit the new study's observations without resorting to free parameters – essentially values that can be tweaked at will to make theory and observation match. By contrast, says Brouwer, conventional dark matter models need four free parameters to be adjusted to explain the data." https://www.newscientist.com/article/2116446-first-test-of-rival-to-einsteins-gravity-kills-off-dark-matter/

How many fudge factors LIGO conspirators needed to model the nonexistent gravitational waves is a deep mystery:

"Cornell professors Saul Teukolsky, astrophysics, and Larry Kidder, astronomy, played an instrumental role in the first detection of gravitational waves, a century after Albert Einstein predicted their existence in his theory of general relativity. [...] The LIGO and Virgo group confirmed that these gravitational waves had come from the collision of black holes by comparing their data with a theoretical model developed at Cornell. Teukolsky and the Cornell-founded Simulation of eXtreme Spacetimes collaboration group have been developing this model since 2000, according to the University." http://cornellsun.com/2016/02/10/cornell-scientists-validate-einsteins-theory-of-relativity/

Pentcho Valev