Discussion:
Adding Fudge Factors To Einstein's General Relativity
(trop ancien pour répondre)
Pentcho Valev
2017-12-14 08:55:20 UTC
Permalink
University of California, Davis: "The original theory of General Relativity has given correct predictions in every other context, Temple said, and there is no direct evidence of dark energy. So why add a "fudge factor" (dark energy or the cosmological constant) to equations that already appear correct?" https://www.ucdavis.edu/news/doing-without-dark-energy/

The equations of general relativity cannot be "correct" - they are not even wrong. A physics theory is either a NOT-EVEN-WRONG EMPIRICAL CONCOCTION or a DEDUCTIVE THEORY which is "built up logically from a small number of fundamental assumptions, the so-called axioms":

Albert Einstein: "From a systematic theoretical point of view, we may imagine the process of evolution of an empirical science to be a continuous process of induction. Theories are evolved and are expressed in short compass as statements of a large number of individual observations in the form of empirical laws, from which the general laws can be ascertained by comparison. Regarded in this way, the development of a science bears some resemblance to the compilation of a classified catalogue. It is, as it were, a purely empirical enterprise. But this point of view by no means embraces the whole of the actual process ; for it slurs over the important part played by intuition and deductive thought in the development of an exact science. As soon as a science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms." https://www.marxists.org/reference/archive/einstein/works/1910s/relative/ap03.htm

In other words, equations in a physics theory are either GUESSED or (possibly guessed initially but then rigorously) DEDUCED from "a small number of fundamental assumptions, the so-called axioms":

Richard Feynman: "Dirac discovered the correct laws for relativity quantum mechanics simply by guessing the equation. The method of guessing the equation seems to be a pretty effective way of guessing new laws." http://dillydust.com/The%20Character%20of%20Physical%20Law~tqw~_darksiderg.pdf

Einstein's general relativity was not deduced from "a small number of fundamental assumptions, the so-called axioms". It is a not-even-wrong empirical concoction - a malleable combination of ad hoc ("guessed") equations and fudge factors allowing Einsteinians to predict anything they want.

Before 1915 theoretical physics was DEDUCTIVE - you cannot introduce any changes to your theory that are not deducible from the initial axioms (postulates). In 1915 things changed. Here Michel Janssen describes endless empirical groping, fudging and fitting until "excellent agreement with observation" was reached:

Michel Janssen: "But - as we know from a letter to his friend Conrad Habicht of December 24, 1907 - one of the goals that Einstein set himself early on, was to use his new theory of gravity, whatever it might turn out to be, to explain the discrepancy between the observed motion of the perihelion of the planet Mercury and the motion predicted on the basis of Newtonian gravitational theory. [...] The Einstein-Grossmann theory - also known as the "Entwurf" ("outline") theory after the title of Einstein and Grossmann's paper - is, in fact, already very close to the version of general relativity published in November 1915 and constitutes an enormous advance over Einstein's first attempt at a generalized theory of relativity and theory of gravitation published in 1912. The crucial breakthrough had been that Einstein had recognized that the gravitational field - or, as we would now say, the inertio-gravitational field - should not be described by a variable speed of light as he had attempted in 1912, but by the so-called metric tensor field. The metric tensor is a mathematical object of 16 components, 10 of which independent, that characterizes the geometry of space and time. In this way, gravity is no longer a force in space and time, but part of the fabric of space and time itself: gravity is part of the inertio-gravitational field. Einstein had turned to Grossmann for help with the difficult and unfamiliar mathematics needed to formulate a theory along these lines. [...] Einstein did not give up the Einstein-Grossmann theory once he had established that it could not fully explain the Mercury anomaly. He continued to work on the theory and never even mentioned the disappointing result of his work with Besso in print. So Einstein did not do what the influential philosopher Sir Karl Popper claimed all good scientists do: once they have found an empirical refutation of their theory, they abandon that theory and go back to the drawing board. [...] On November 4, 1915, he presented a paper to the Berlin Academy officially retracting the Einstein-Grossmann equations and replacing them with new ones. On November 11, a short addendum to this paper followed, once again changing his field equations. A week later, on November 18, Einstein presented the paper containing his celebrated explanation of the perihelion motion of Mercury on the basis of this new theory. Another week later he changed the field equations once more. These are the equations still used today. This last change did not affect the result for the perihelion of Mercury. Besso is not acknowledged in Einstein's paper on the perihelion problem. Apparently, Besso's help with this technical problem had not been as valuable to Einstein as his role as sounding board that had earned Besso the famous acknowledgment in the special relativity paper of 1905. Still, an acknowledgment would have been appropriate. After all, what Einstein had done that week in November, was simply to redo the calculation he had done with Besso in June 1913, using his new field equations instead of the Einstein-Grossmann equations. It is not hard to imagine Einstein's excitement when he inserted the numbers for Mercury into the new expression he found and the result was 43", in excellent agreement with observation." https://netfiles.umn.edu/users/janss011/home%20page/EBms.pdf

Einstein's general relativity had not predicted that the gravitational waves travel at the speed of light but was tweaked to make that prediction:

Arthur Eddington: "The statement that in the relativity theory gravitational waves are propagated with the speed of light has, I believe, been based entirely upon the foregoing investigation; but it will be seen that it is only true in a very conventional sense. If coordinates are chosen so as to satisfy a certain condition which has no very clear geometrical importance, the speed is that of light; if the coordinates are slightly different the speed is altogether different from that of light. The result stands or falls by the choice of coordinates and, so far as can be judged, the coordinates here used were purposely introduced in order to obtain the simplification which results from representing the propagation as occurring with the speed of light. The argument thus follows a vicious circle." The Mathematical Theory of Relativity, pp. 130-131 https://www.amazon.com/Mathematical-Theory-Relativity-S-Eddington/dp/0521091659

In order to be consistent with dark matter, general relativity needs four fudge factors:

"Verlinde's calculations fit the new study's observations without resorting to free parameters – essentially values that can be tweaked at will to make theory and observation match. By contrast, says Brouwer, conventional dark matter models need four free parameters to be adjusted to explain the data." https://www.newscientist.com/article/2116446-first-test-of-rival-to-einsteins-gravity-kills-off-dark-matter/

How many fudge factors LIGO conspirators needed to model the nonexistent gravitational waves is a deep mystery:

"Cornell professors Saul Teukolsky, astrophysics, and Larry Kidder, astronomy, played an instrumental role in the first detection of gravitational waves, a century after Albert Einstein predicted their existence in his theory of general relativity. [...] The LIGO and Virgo group confirmed that these gravitational waves had come from the collision of black holes by comparing their data with a theoretical model developed at Cornell. Teukolsky and the Cornell-founded Simulation of eXtreme Spacetimes collaboration group have been developing this model since 2000, according to the University." http://cornellsun.com/2016/02/10/cornell-scientists-validate-einsteins-theory-of-relativity/

Pentcho Valev
Pentcho Valev
2017-12-15 09:24:00 UTC
Permalink
Sabine Hossenfelder: "Is this still science?" has become a recurring question in the foundations of physics. Whether it's the multiverse, string theory, supersymmetry, or inflation, concerns abound that theoreticians have crossed a line. Science writer Jim Baggott called the new genre "fairy-tale science." Historian Helge Kragh coined the term "higher speculations," and Peter Woit, more recently, suggested the name "fake physics." http://backreaction.blogspot.bg/2017/11/if-science-is-what-scientists-do-what.html

Sabine Hossenfelder (Bee): "The criticism you raise that there are lots of speculative models that have no known relevance for the description of nature has very little to do with string theory but is a general disease of the research area. Lots of theorists produce lots of models that have no chance of ever being tested or ruled out because that's how they earn a living. The smaller the probability of the model being ruled out in their lifetime, the better. It's basic economics. Survival of the 'fittest' resulting in the natural selection of invincible models that can forever be amended." http://www.math.columbia.edu/~woit/wordpress/?p=9375

Sabine Hossenfelder: "The cosmological constant is a free parameter in Einstein's theory of general relativity. This means its value must be fixed by measurement." http://backreaction.blogspot.bg/2017/12/the-cosmological-constant-is-not-worst.html

"A fudge factor is an ad hoc quantity introduced into a calculation, formula or model in order to make it fit observations or expectations. Examples include Einstein's Cosmological Constant..." https://en.wikipedia.org/wiki/Fudge_factor

Ken Croswell, Magnificent Universe, p. 179: "Ever since, the cosmological constant has lived in infamy, a fudge factor concocted merely to make theory agree with observation." http://www.amazon.com/Magnificent-Universe-Ken-Croswell/dp/0684845946

Clearly there is no essential difference between "invincible models that can forever be amended", on the one hand, and Einstein's general relativity, on the other. In both cases we have "fake physics".

Can one add a fudge factor analogous to the cosmological constant to the Lorentz transformation equations? One cannot, and the reason is simple: Special relativity is deductive (even though a false postulate and an invalid argument spoiled it from the very beginning) and fudging is impossible by definition - one has no right to add anything that is not deducible from the postulates.

Einstein's general relativity was not deduced from postulates. It is a not-even-wrong empirical concoction - a malleable combination of ad hoc ("guessed") equations and fudge factors allowing Einsteinians to predict anything they want:

https://www.quora.com/What-are-the-postulates-of-General-Relativity
What are the postulates of General Relativity? Alexander Poltorak, Adjunct Professor of Physics at the CCNY: "In 2005 I started writing a paper, "The Four Cornerstones of General Relativity on which it doesn't Rest." Unfortunately, I never had a chance to finish it. The idea behind that unfinished article was this: there are four principles that are often described as "postulates" of General Relativity:

1. Principle of general relativity

2. Principle of general covariance

3. Equivalence principle

4. Mach principle

The truth is, however, that General Relativity is not really based on any of these "postulates" although, without a doubt, they played important heuristic roles in the development of the theory." [END OF QUOTATION]

Sometimes Einsteinians call Einstein's 1915 final ad hoc equations "postulates" (we all live in Einstein's schizophrenic world, don't we):

http://math.stanford.edu/~schoen/trieste2012/lecture_3.pdf
"Postulates of General Relativity
Postulate 1: A spacetime (M^4, g) is a Riemannian 4-manifold M^4 with a Lorentzian metric g.
Postulate 2: A test mass beginning at rest moves along a timelike geodesic. (Geodesic equation) ...
Postulate 3: Einstein equation is satisfied. (Einstein equation) ..." [END OF QUOTATION]

Pentcho Valev
Pentcho Valev
2017-12-16 15:01:05 UTC
Permalink
What did the Pound-Rebka experiment show? That the velocity difference (acceleration) of photons is "identical to that which a material object would acquire in free fall", as predicted by Newton's emission theory of light, or that there is gravitational time dilation, as predicted by general relativity (the two predictions are incompatible - cannot be both correct)? The former is the case - the Pound-Rebka experiment unequivocally disproved Einstein’s relativity:

R. V. Pound and G. A. Rebka, Jr, APPARENT WEIGHT OF PHOTONS http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.4.337

R. V. Pound and J. L. Snider, Effect of Gravity on Gamma Radiation: "It is not our purpose here to enter into the many-sided discussion of the relationship between the effect under study and general relativity or energy conservation. It is to be noted that no strictly relativistic concepts are involved and the description of the effect as an "apparent weight" of photons is suggestive. The velocity difference predicted is identical to that which a material object would acquire in free fall for a time equal to the time of flight." http://virgo.lal.in2p3.fr/NPAC/relativite_fichiers/pound.pdf

That the speed of falling light varies like the speed of ordinary falling bodies is so obvious that many Einsteinians confirm the fact and so unwittingly disprove Einstein's relativity:

"If we accept the principle of equivalence, we must also accept that light falls in a gravitational field with the same acceleration as material bodies." http://sethi.lamar.edu/bahrim-cristian/Courses/PHYS4480/4480-PROBLEMS/optics-gravit-lens_PPT.pdf

University of Illinois at Urbana-Champaign: "Consider a falling object. ITS SPEED INCREASES AS IT IS FALLING. Hence, if we were to associate a frequency with that object the frequency should increase accordingly as it falls to earth. Because of the equivalence between gravitational and inertial mass, WE SHOULD OBSERVE THE SAME EFFECT FOR LIGHT. So lets shine a light beam from the top of a very tall building. If we can measure the frequency shift as the light beam descends the building, we should be able to discern how gravity affects a falling light beam. This was done by Pound and Rebka in 1960. They shone a light from the top of the Jefferson tower at Harvard and measured the frequency shift. The frequency shift was tiny but in agreement with the theoretical prediction. Consider a light beam that is travelling away from a gravitational field. Its frequency should shift to lower values. This is known as the gravitational red shift of light." https://courses.physics.illinois.edu/phys419/sp2011/lectures/Lecture13/L13r.html

Albert Einstein Institute: "One of the three classical tests for general relativity is the gravitational redshift of light or other forms of electromagnetic radiation. However, in contrast to the other two tests - the gravitational deflection of light and the relativistic perihelion shift -, you do not need general relativity to derive the correct prediction for the gravitational redshift. A combination of Newtonian gravity, a particle theory of light, and the weak equivalence principle (gravitating mass equals inertial mass) suffices. [...] The gravitational redshift was first measured on earth in 1960-65 by Pound, Rebka, and Snider at Harvard University..." http://www.einstein-online.info/spotlights/redshift_white_dwarfs.html

Yet in the post-truth world the official teaching is this:

"The Pound–Rebka experiment measured the relative redshift of two sources situated at the top and bottom of Harvard University's Jefferson tower. The result was in excellent agreement with general relativity. This was one of the first precision experiments testing general relativity. The experiment was later improved to better than the 1% level by Pound and Snider." https://en.wikipedia.org/wiki/Tests_of_general_relativity

Pentcho Valev

Loading...